Infinitely many solutions for a class of systems including the (p1,..., pn)-biharmonic operators
نویسندگان
چکیده
In this work, we prove the existence of infinitely many solutions for a general form an elliptic system involving (p1,..., pn)-biharmonic operators via variational methods.
منابع مشابه
Existence results of infinitely many solutions for a class of p(x)-biharmonic problems
The existence of infinitely many weak solutions for a Navier doubly eigenvalue boundary value problem involving the $p(x)$-biharmonic operator is established. In our main result, under an appropriate oscillating behavior of the nonlinearity and suitable assumptions on the variable exponent, a sequence of pairwise distinct solutions is obtained. Furthermore, some applications are pointed out.
متن کاملINFINITELY MANY SOLUTIONS FOR A CLASS OF P-BIHARMONIC PROBLEMS WITH NEUMANN BOUNDARY CONDITIONS
The existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous Neumann boundary conditions. Using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous Neumann boundary conditions, we obtain the result.
متن کاملinfinitely many solutions for a class of p-biharmonic problems with neumann boundary conditions
the existence of infinitely many solutions is established for a class of nonlinear functionals involving the p-biharmonic operator with nonhomoge- neous neumann boundary conditions. using a recent critical-point theorem for nonsmooth functionals and under appropriate behavior of the nonlinear term and nonhomogeneous neumann boundary conditions, we obtain the result.
متن کاملINFINITELY MANY SOLUTIONS FOR CLASS OF NAVIER BOUNDARY (p, q)-BIHARMONIC SYSTEMS
This article shows the existence and multiplicity of weak solutions for the (p, q)-biharmonic type system ∆(|∆u|p−2∆u) = λFu(x, u, v) in Ω, ∆(|∆v|q−2∆v) = λFv(x, u, v) in Ω, u = v = ∆u = ∆v = 0 on ∂Ω. Under certain conditions on F , we show the existence of infinitely many weak solutions. Our technical approach is based on Bonanno and Molica Bisci’s general critical point theorem.
متن کاملInfinitely many solutions for a class of $p$-biharmonic equation in $mathbb{R}^N$
Using variational arguments, we prove the existence of infinitely many solutions to a class of $p$-biharmonic equation in $mathbb{R}^N$. The existence of nontrivial solution is established under a new set of hypotheses on the potential $V(x)$ and the weight functions $h_1(x), h_2(x)$.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Filomat
سال: 2022
ISSN: ['2406-0933', '0354-5180']
DOI: https://doi.org/10.2298/fil2207303m